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Cellular self-propulsion of two-dimensional dissipative structures
and spatial-period tripling Hopf bifurcation
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Instabilities arising in two-dimensional patterns are analyzed; in particular, we report on two generic insta-
bilities of an ordered dissipative stationary structure. The first of these corresponds to several-point symmetry
breakings, such as mirror and rotation symmetry, which cause the patterns to travel and may give rise to spirals
or labyrinths. The second type manifests itself as a collective out-of-phase temporal oscillation, resulting in
spatial-period tripling. We present both a numerical and an analytical analysis of the new emerging patterns.
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There is an overabundance of dissipative systems
may spontaneously build up a highly organized pattern fr
an initially structureless state when they are moved aw
from thermodynamic equilibrium. Typical examples of tw
dimensional~2D! patterns include reaction-diffusion@1# sys-
tems, Marangoni convection@2#, Faraday waves@3#, moving
fronts@4#, granular media@5#, and perhaps biological object
The most frequent ordered structures are hexagons, alth
there is evidence of various other patterns~squares, etc.!.

In studies on secondary instabilities~i.e., instabilities of
the ordered structure! of one-dimensional systems, consider-
able progress has been made both experimentally@6–9# and
theoretically@10–14# since the discovery by Simon, Bech
hoefer, and Libchaber@15# of the so-called ‘‘solitary’’ mode
~consisting of one or two asymmetric cells traveling sid
ways!.

To date, however, work on two-dimensional structu
has been primarily directed toward relative stability betwe
ordered patterns and their stability against phase modulat
~the Eckhaus instability!. From symmetry considerations, th
pattern is expected to undergo myriad secondary instabili
The aim of this paper is to report explicitly on two gene
instabilities. The basic state is taken to be hexagonal, b
for definiteness and because hexagons are a generic pa
The first instability is accompanied by the loss of seve
mirror and rotation symmetries, which may cause the pat
to drift in one of six possible directions. Conflicts in th
choice of drift direction may cause spirals or labyrinths
develop. The second one appears as a Hopf bifurca
where the six cells forming the corners of the hexagon os
late in an alternating manner with a temporal phase s
between two successive cells of 2p/3, whereas the cell in the
middle of the hexagon has a temporal phase shift
22p/3. Other types of collective out-of-phase oscillatio
are also possible.

Our analysis will be exemplified both analytically and n
merically on a generic equation, the 2D version of t
damped Kuramoto-Sivashinsky~DKS! equation
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which is a paradigm in dissipative systems. This equat
arises in a large variety of physical and chemical situatio
@16#, and we therefore expect the results to have a gen
consequence. Moreover, we have shown that in 1D@14# this
equation produces generic instabilities~parity breaking, vac-
illating breathing, etc.! observed in various systems. For a
these reasons we have chosen to work on this equatio
will be recognized that all our reasoning can be readily u
with any other starting model equations.

The scalarh may mimic, for example, the instantaneo
position of a surface separating two phases. For example
~1! describes front dynamics in free growth at large spe
@17#. The damping terma acts as a stabilizer and plays th
role of a tuning parameter for complexity~i.e., a control
parameter, such as the thermal gradient in directional so
fication!.

The linear dispersion relation~for perturbations in the
form eiq•r1vt, wherer designates the two-dimensional pos
tion vector! readsv52a1q22q4. The critical condition
for the onset of instability is given byqc51/A2 and
ac51/4. Below ac , the homogeneous state becomes u
stable against the formation of cells. All ordered structu
that are compatible with translational symmetries are
lowed ~squares, rolls, hexagons, etc.!. We find that close to
ac the hexagons prevail~note that hexagons appear fo
a,ac as a transcritical bifurcation due to the loss of t
up-down symmetry!.

The richness of nonequilibrium systems stems from
fact that their dynamics do not generally possess a Lyapu
functional, except for specific situations very close to t
threshold. The variational character may be broken eit
because other modes become active, a situation that
lead to several symmetry breakings and drifts~drift is inti-
mately related to nonvariational effects!, or because inhomo
geneous fluctuations set in that detect the underlying perio
state through nonlinearities. This results in wave interf
ences that lead to collective—generally out-of-phase
oscillations and in reduction of the translational symmetr
~here, tripling of the spatial wavelength!. Here again, nonva-
riational effects lead to permanent motions.
6902 © 1997 The American Physical Society
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Let us begin with the first category in which the origin
translational invariance is preserved. When lowering
value ofa, there are new modes that become unstable.
initial hexagonal structure is represented on the basis of
unit vectorsu1, u2, u3 ~where the three vectors make a
angle of 120° with each other! with amplitudesA1, A2, and
A3 respectively. The basic wave number is denoted byq. For
a hexagonal pattern, the next mode to become unstable i
one whose wave vector lies on the circle with radiusA3q. It
is the interaction between this mode and the basic one
induces several symmetry breakings and drifts. This m
~which is naturally generated from nonlinearities! is built on
the new basis,u22u3, plus cyclic permutations. Let the thre
new amplitudes be denoted byBi ( i51,2,3;B1 is the ampli-
tude associated withu22u3). The amplitude equations in
volving interactions between both harmonics take the fo
@18#

Ȧ15m1A11m2A2*A3*1m3~A2B31A3B2* !1m4~A2*
2B1

1A3*
2B1* !1m5uA1u2A11m6~ uB2u21uB3u2!A1 , ~2!

Ḃ15m7B11m8A2A3*1m9B2*B3*1m10~A1A2
21A1*A3*

2!

1m11~ uA2u21uA3u2!B11m12uB1u2B1

1m13~ uB2u21uB3u2!B1 , ~3!

plus cyclic permutations. The forms of these equations co
also be inferred from translational and rotational symmetr
The forms of the equations are general and should arise
gardless of the strarting model equations.

The explicit form of the coefficients entering the amp
tude equations will not be listed in this brief account. It is
simple matter to recognize that, in the absence of theB
terms, the equation of motion possesses a Lyapunov fu
tional. The interaction betweenA and B breaks the varia-
tional character, and this is precisely the source of perma
drift outlined below. Introducing the amplitude and phase
the complex quantities,Aj5Ra

j eia j andBj5Rb
j eib j , we can

deduce real equations. There is a plethora of possibilities,
we shall limit ourselves to a typical situation in this bri
exposition, while leaving the details to a forthcoming pub
cation. We consider here the case where the amplitude
the three hexagonal directions are identical:Ra

j 5Ra and
Rb
j 5Rb . Then, straightforward algebra on the real a

imaginary parts of Eqs.~2! and~3! yields the following con-
dition @18#:

uu1u5uu2u5uu3u5u, u1[b12~a22a3!. ~4!

The quantityu represents the phase shift between the h
monic built on the directionu22u3, with phaseb1, and the
phases of the principal harmonics in theu2 ~phasea2) and
u3 ~phasea3) directions that serve to construct the next re
nant harmonic. This is again a consequence of rotatio
symmetry. There are two possibilities that may arise: eit
all theu ’ s have the same sign, or oneu has a sign opposite
to that of the two others. We consider here only the sec
case, although the first one is also possible@18# from general
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arguments, although we have not yet seen any dynam
signature for it. It is convenient to write the fieldh in a real
form:

h52Ra@cos~qu1•r !1cos~qu2•r !1cos~qu3•r !#

12Rb$cosucos@q~u22u3!•r #2sinusin@q~u22u3!•r #%

12Rb$cosucos@q~u32u1!•r #1sinusin@~q~u32u1!•r #%

12Rb$cosucos@q~u12u2!•r #1sinusin@q~u12u2!•r #%,

~5!

where the phasesa i andb i have been absorbed through a
appropriate translation,r→r2r0, with qr0•ui5a i . It is a
simple matter to see that as soon asuÞ0,p, several symme-
tries are broken. It is clear from the above expression t
both symmetries with respect to the mirrors that are ortho
nal to the axesu2 andu3 are broken, while the one on th
mirror orthogonal tou1 is preserved. Similarly, several rota
tional symmetries of the hexagonal group together with c
tral symmetries are broken as well~note that the latter cor-
responds in 2D to a rotation by an angle ofp). Some of
these symmetries are easy to recognize from Eq.~5! ~see
below also!. A complete enumeration of the spatial grou
symmetries that are broken will be published elsewhere@18#.
As a consequence of these symmetry breakings~combined
with nonvariational effects!, the pattern drifts. Indeed, a
analysis of the imaginary part of Eqs.~2! and~3! shows that
a j52qC•uj t @recall thata j had been absorbed into Eq.~5!
via a translation byr0], whereC54qRb* sinu* (u22u3) is the
drift velocity ~the stars refer to fixed points of the dynamic
system!. This obviously shows a connection between t
drift and the parameteru, which is directly connected to
several-point symmetry breaking. The pattern drifts alo
the direction given byu22u3 ~which is orthogonal tou1).
That is to say, the pattern drifts precisely along the mir
that preserves the symmetry, a fact which can be unders
quite intuitively. Had we chosen the phase alongu2 to have
a sign opposite to the two others, the drift would then ha
been in the direction given byu32u1. In total ~and due to the
original symmetry!, there are six drift directions which ar
possible and are given by the6(u12u2) ~plus cyclic per-
mutations! directions. The choice depends upon the act
fluctuations in a given system. Note that the drift direction
fixed by the second excited harmonic~here, alongu22u3), a
result which is not~at least to the authors! obviousa priori!
The six drift directions arising from the interaction of mod
q andA3q are perpendicular to the sides of the hexago
cells @19#.

An important question arises. Under which circumstan
does the solution discussed above occur? Our analysis sh
that this basically happens as soon as the harmonic
wave numberqA3 becomes active. The region in parame
space where this situation is encountered is approxima
determined by the conditionv(qA3).0. This defines a
boundary beyond which the new solution takes over. W
believe this condition to be quite general and it should ap
to diverse situations; in particular, the same conclusion
reached with a more complex equation arising in the prob
of a moving nematic-isotropic boundary@18#. This means
that the knowledge of the linear dispersion relation may
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6904 55DAUMONT, KASSNER, MISBAH, AND VALANCE
sufficient in a given system to hint at the boundary in para
eter space that separates the stable ordered structure fro
one leading to drift.

Our analytical results have been confirmed by numer
calculations in two ways. First, we have integrated the
namical system of amplitude equations~2! and ~3!. Starting
from arbitrary solutions in the region just below the lin
fixed by v(qA3)50, dynamics tend toward the abov
mentioned symmetry breaking bifurcation. Figure 1 displa
the initial pattern@see Fig. 1~a!# and its evolution after the
instability develops@see Figs. 1~b! and 1~c!#. Several broken

FIG. 1. The original hexagonal pattern and two other figu
~taken at different times! showing the symmetry breaking and th
upward drift.
-
the

l
-

s

symmetries are easily identified in the figure. Note also t
Figs. 1~b! and 1~c! demonstrate that the pattern drifts u
ward. Because the above amplitude equations are expect
be quantitatively and qualitatively accurate only clo
enough to the codimensional two-bifurcation point, we ha
solved numerically the full original DKS equation in order
ascertain the validity of amplitude equation truncations. W
have used a hexagonal box with periodic boundary con
tions. The spatial derivatives are evaluated using seco
order finite differences, and the resulting dynamical syst
is solved by means of a four-point Runge-Kutta method. F
spatial derivatives we have made use of a particular prop
of a hexagonal grid, (( l51

6 hl26h0)/a
25¹2h01O(a2),

wherea is the mesh spacing and the sum is over the fi
values at the six corners of a hexagon, whereash0 refers to
its value in the center of the hexagon. This trick has
advantage of accurately preserving the rotational symm
of the original equation. The numerical analysis has h
again confirmed the overall picture of the results describ
above. A similar analysis has been performed for the N
equation.

Our next investigation focuses on oscillatory modes. B
fore presenting the underlying ideas that guided our wo
we shall first discuss the results that emanate from the
numerical analysis. By increasing the ‘‘aspect ratio’’~the
ratio between the box size and the critical wavelength!, dy-
namics have proven to be richer and richer. If this ratio
large enough~at least equal to three!, and we use a hexagona
box, we have identified an oscillatory mode close enough
the threshold, the snapshot of which is shown in Fig. 2. E
cell in the center is oscillating with a phase shift with the s
cells surrounding it~forming the corners of the hexagon!.
Each corner is oscillating with a phase shift with the adjac
corner, but in phase with the following corner. In all, w
have three oscillators~one in the middle of the hexagon an
two in the corners!. The temporal phase shift between ea
oscillator is found to be equal to 2p/3. It is clear from the
figure that this oscillation is accompanied by an increase
the spatial wavelength. Close inspection shows that
wavelength has tripled.

In order to illustrate the lines of reason that guided t
investigation, we briefly develop a two-dimensional analo
with band theory in solid-state physics, as we have pre
ously suggested for a one-dimensional structure@14#. For
that purpose, leth0(r ) be a steady and spatially period
solution andh1(r ,t) a small perturbation. Linearization o
Eq. ~1! yields

]h1
]t

52ah12¹2h12¹4h112¹h0•¹h1 . ~6!

This equation is reminiscent of the Schro¨dinger equation in
imaginary time for an electron in a crystal, but with a fu
damental difference~see below!. ¹h0 plays the role of the
periodic potential. The Floquet-Bloch theorem states that
general solution has the formh15esteiQ•rĥ(r ), wheres is
the growth rate~or the energy in solid-state physics!, Q is a
wave vector which belongs to the first Brillouin zon

s



-

e
o

c
et
e

bv
e

on

r

on
n

x
tor

t

the
ur
the

ed.
. To
has
hile
eu-
for
of
ty
le.
ed
.
r
x-
ical

st

the
ery
lly

g
ct-
ic

rift,
x-
the

of
een
e
on

per-
ent
ay
-
ps.
ose
s—
of

ear
ents

he
,

55 6905CELLULAR SELF-PROPULSION OF TWO-DIMENSIONAL . . .
uQu<uqu, and ĥ(r ) is a periodic function having the period
icity of the basic solutionh0. If s(Q) is an eigenvalue, then
this is equally true fors(q1Q), due to the Goldstone mod
associated with translational invariance. Strong wave c
pling occurs only whenv(Q).v(q6Q) ~recall thatv is
the bare eigenvalue, and in a perturbative scheme it suffi
to consider this quantity!, and this leads to gap opening. L
us be more specific here and focus on the direction perp
dicular to u1. Inspection of the relationv(Q).v(q6Q)
reveals some interesting intersections. The first one is o
ous and is given byQ5q/). This gives rise to a resonanc
between the incident wave@22# and the reflected one@22#.
This is a direct analogue of the so-called Bragg reflecti
Treating the term¹h0 as a perturbation~in a similar way as
for the quasifree electron problem in a crystal! and expand-
ing the wave on the space spanned by the two degene
states, we find an ‘‘energy’’ gap atQ5q/) @18#, which is
unimportant here. Most important in our case is the sec
degeneracy~which is easy to determine by writing dow
explicitly the bare dispersion relationv), which occurs at
Q;q/) ~for q close toqc). This resonance follows from

FIG. 2. Out-of-phase oscillations. Cells have exchanged t
role from one figure to the next~not a full temporal period is shown
but approximately 2/3).
u-

es

n-

i-

.

ate

d

interaction of the incident wave and the transmitted one@22#.
Perturbation theory reveals here a nonclassical result~which
has no analogue in quantum mechanics!: the resonance
opens a gap on theQ axis. This gap corresponds to comple
eigenvaluess. This is possible here since the linear opera
in Eq. ~6! is not self-adjoint~contrary to Hamiltonians in
quantum mechanics!. A simple calculation leads~at the
crossing point! to Im(s)5A15Raq

2/2. On one hand, the fac
that the resonance occurs atQ;q/3 implies a period tripling
of the structure in the direction ofui. On the other hand, the
opening of a gap on the wave number axis means that
instability must be oscillatory in time. This completes o
analysis, on which we shall give an extended account in
near future.

Finally, an important question remains to be address
This concerns the experimental access to these dynamics
the authors’ best knowledge, no experimental evidence
been reported on the instabilities we have described. W
we think that several systems may be good candidates,
tectics have proven in one dimension to be appropriate
both drifting patterns and oscillations. According to one
our suggestions@20#, a sudden change in the growth veloci
by a factor of about 4 had led to pattern drifting as a who
Most experiments on two-dimensional fronts are perform
on metals wherein situ analysis is a formidable challenge
We believe that transparent materials~such as those used fo
thin samples! are good candidates on which to perform e
periments. Here, of course, visualization based on opt
transmission~as with thin samples! is probably not suitable.
Imaging using reflection on the solid-liquid front would mo
likely be promising. A sudden change of the velocity~pre-
sumably by a factor of 3 for a hexagonal structure, due to
law l2V;const and because wavelength adjustment is v
slow, so that a sudden change in velocity is practica
equivalent to a wavelength increase;V is the growth velocity
and l the wavelength! should cause symmetry breakin
along the whole front. Oscillations may be generated by a
ing on the eutectic concentration. Chemical or hydrodynam
systems may also offer the possibility of accessing a d
provided one can monitor a wavelength modification, for e
ample, via a thermal memory, as has been devised for
study of the Eckhaus instability@21#. Once the condition for
the drift is reached, it is likely that a conflict in the choice
the traveling direction can cause several interactions betw
waves in different directions. This may lead to spiral-lik
defects or labyrinth patterns. Preliminary simulations
large scales seem to reveal evidence of such structures.

It must be emphasized that the same analysis can be
formed for any symmetry other than hexagonal. The pres
work has given a short view of the richness of what we m
call the theory of stability of ‘‘two-dimensional nonvaria
tional crystals.’’ There are 17 two-dimensional space grou
Combinations of simple analytical concepts such as th
presented here—group theory, and numerical work
promise to provide a wide program of nonlinear physics
2D dissipative structures.

What we have learned so far is that a simple nonlin
equation based on symmetries and nonvariational ingredi
~which are inherent in nonequilibrium systems! reveals a va-
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riety of fascinating static and dynamical phenomena. Th
continue to prove to be a disguised form for only a fe
prototypes and may embrace diverse physical and chem
systems.
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