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Cellular self-propulsion of two-dimensional dissipative structures
and spatial-period tripling Hopf bifurcation
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Instabilities arising in two-dimensional patterns are analyzed; in particular, we report on two generic insta-
bilities of an ordered dissipative stationary structure. The first of these corresponds to several-point symmetry
breakings, such as mirror and rotation symmetry, which cause the patterns to travel and may give rise to spirals
or labyrinths. The second type manifests itself as a collective out-of-phase temporal oscillation, resulting in
spatial-period tripling. We present both a numerical and an analytical analysis of the new emerging patterns.
[S1063-651%97)03006-1

PACS numbes): 47.54:+r, 05.45+b, 47.20.Lz, 81.10.A]

There is an overabundance of dissipative systems thathich is a paradigm in dissipative systems. This equation
may spontaneously build up a highly organized pattern fromarises in a large variety of physical and chemical situations
an initially structureless state when they are moved away16], and we therefore expect the results to have a general
from thermodynamic equilibrium. Typical examples of two- consequence. Moreover, we have shown that ir{ 14} this
dimensional2D) patterns include reaction-diffusi¢d] sys-  equation produces generic instabilitiggrity breaking, vac-
tems, Marangoni convectidi2], Faraday wavef3], moving jjjating breathing, etg.observed in various systems. For all
fronts[4], granular medig5], and perhaps biological objects. these reasons we have chosen to work on this equation. It
The most frequent ordered structures are hexagons, althouglj| pe recognized that all our reasoning can be readily used
there is evidence of various other patte(aguares, etg. with any other starting model equations.

In studies on secondary instabiliti€ise., instabilities of The scalath may mimic, for example, the instantaneous

the ordered structuyef one-dimensional syste nsider- o :
able progress has lzeen made both experxilmer[%gﬁp] and position qf a surface separgtlng two phases. For example, Eq.
(1) describes front dynamics in free growth at large speed

theoretically[10—-14 since the discovery by Simon, Bech- . o
hoefer andyLibchabe{|15] of the so—calle)c/i “élolitary” mode [17]. The damping terme acts as a stabilizer and plays the
' role of a tuning parameter for complexity.e., a control

(consisting of one or two asymmetric cells traveling side- S T -
parameter, such as the thermal gradient in directional solidi-

ways. S
To date, however, work on two-dimensional structuresfication.

has been primarily directed toward relative stability between The linear dispersion relatioffor perturbations in the
ordered patterns and their stability against phase modulatiori@rm €'9" "', wherer designates the two-dimensional posi-
(the Eckhaus instabilily From symmetry considerations, the tion vecto) readsw=—a+q*—q*. The critical condition
pattern is expected to undergo myriad secondary instabilitieor the onset of instability is given by.=1/\/2 and
The aim of this paper is to report explicitly on two generic a.=1/4. Below «., the homogeneous state becomes un-
instabilities. The basic state is taken to be hexagonal, bothtable against the formation of cells. All ordered structures
for definiteness and because hexagons are a generic pattetimat are compatible with translational symmetries are al-
The first instability is accompanied by the loss of severalowed (squares, rolls, hexagons, ¢tdNe find that close to
mirror and rotation symmetries, which may cause the patter. the hexagons prevailnote that hexagons appear for
to drift in one of six possible directions. Conflicts in the a<a. as a transcritical bifurcation due to the loss of the
choice of drift direction may cause spirals or labyrinths toup-down symmetry
develop. The second one appears as a Hopf bifurcation The richness of nonequilibrium systems stems from the
where the six cells forming the corners of the hexagon oscilfact that their dynamics do not generally possess a Lyapunov
late in an alternating manner with a temporal phase shiffunctional, except for specific situations very close to the
between two successive cells of B, whereas the cell in the threshold. The variational character may be broken either
middle of the hexagon has a temporal phase shift obecause other modes become active, a situation that may
—2m/3. Other types of collective out-of-phase oscillationslead to several symmetry breakings and drifisift is inti-
are also possible. mately related to nonvariational effegter because inhomo-
Our analysis will be exemplified both analytically and nu- geneous fluctuations set in that detect the underlying periodic
merically on a generic equation, the 2D version of thestate through nonlinearities. This results in wave interfer-

damped Kuramoto-SivashinskipKS) equation ences that lead to collective—generally out-of-phase—
. oscillations and in reduction of the translational symmetries
o ah—V2h—V4h+(Vh)2, (1) (here, tripling of the spatial wavelengtiHere again, nonva-

at riational effects lead to permanent motions.
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Let us begin with the first category in which the original arguments, although we have not yet seen any dynamical
translational invariance is preserved. When lowering thesignature for it. It is convenient to write the fieldin a real
value of «, there are new modes that become unstable. Théorm:
initial hexagonal structure is represented on the basis of the
unit vectorsuy, Uy, Us (where the three vectors make an N=2Ra[cogqu;-r)+cogquy-r)+cogqus-r)]
angle of 120° with each othewith amplitudesA,, A,, and + 2R cos9COS Al Us— Us) - 11— singsi Us—Us) -

Aj respectively. The basic wave number is denoted biyor ol $0(Ux~Uz)-1] AUz —us)- 1l
a hexagonal pattern, the next mode to become unstable is the +2R,{cosf#cog q(u;—u;)-r]+sindsin (q(uz—uq)-r]}
one whose wave vector lies on the circle with radi@. It L
is the interaction between this mode and the basic one that T 2Rb{COSACO$G(Uy—Up) - T]+singsinq(u; —uz) -},
induces several symmetry breakings and drifts. This mode (5)
(which is naturally generated from nonlinearifiés built on

the new basisy,— us, plus cyclic permutations. Let the three Where the phases; and 8; have been absorbed through an
new amplitudes be denoted By (i=1,2,3;B; is the ampli- appropriate translatiom—r—ro, with gro-uj=a;. Itis a
tude associated with,—us). The amplitude equations in- Simple matter to see that as soon¢as0,, several symme-

volving interactions between both harmonics take the fornifies are broken. It is clear from the above expression that
[18] both symmetries with respect to the mirrors that are orthogo-

nal to the axesl, andu; are broken, while the one on the
. - * %2 mirror orthogonal tau, is preserved. Similarly, several rota-
A= At moho Az + pna(AgBat AgBy ) + ua(Az By tional symmetries of the hexagonal group together with cen-
+AY2B* )+ el A2A, + B,|2+[B:D)A,. (2 tral symmetries are broken as wéflote that the latter cor-
3 B FaslAdlArt pno([Bol"H[B3[DAL - (D responds in 2D to a rotation by an angle ©f. Some of
. these symmetries are easy to recognize from ([Gy.(see
B1=u7B1+ uwgAA% + noB3 B + i AjAS+ AF AL ?) below als9. A complete enumeration of the spatial group
5 ) 5 symmetries that are broken will be published elsewh&gg
+ paa(|Ag|*+[Ag]?) By + 112 B4 *By As a consequence of these symmetry breakigsnbined
+ uaal|Bo|2+ B3| 2By, 3) with npnvarlatlgnal _effeci)s the pattern drifts. Indeed, an
analysis of the imaginary part of Eq®) and(3) shows that
plus cyclic permutations. The forms of these equations could —qC-ujt [recall thata; had been absorbed into EG)

. . b S
also be inferred from translational and rotational symmetries. o> translation by,], whereC= 4qRy sind* (u,— us) is the

The forms of the equations are general and should arise r%“;tt(\e/rfjlogrl%sftg%\?ifazlrefser:ot\c/)vélXaedcggwéit?;r:hge?\mzwI?[ﬁ:a
gardless of the strarting model equations. Y : y

The explicit form of the coefficients entering the ampli- gg{/teg;fj é?ri ga:r?rrr?greﬂ’bxgllfiz IS _?A':Ctgttgfﬁn der(i:fidargn
tude equations will not be listed in this brief account. It is a P Y y 9- P 9

simple matter to recognize that, in the absence of Bne the direction given byu,—us (which is orthogonal tau,).
terms, the equation of motion p(,)ssesses a Lyapunov func%l:hat is to say, the pattern drifts precis_ely along the mirror
tional. The interaction betweeA and B breaks the varia- hat preserves the symmetry, a fact which can be understood

tional character, and this is precisely the source of permaner?'t"me intuitively. Had we chosen the phase alango have

drift outlined below. Introducing the amplitude and phase for? SIgN opposite to the_ two others, the drift would then have
the complex quantitiesh, = Rgei“i andB, = R{,eiﬁj we can been in the direction given hy;—u;. In total (and due to the

) i . C{riginal symmetry, there are six drift directions which are
deduce real equations. There is a plethora of possibilities, bu ; : :
we shall limit ourselves to a typical situation in this brief possible and are given by the (u; ~up) (plus cyclic per-
exposition, while leaving the details to a forthcomin ub“_mutation$ directions. The choice depends upon the actual
p ’ . 9 gp fluctuations in a given system. Note that the drift direction is
cation. We consider here the case where the amplitudes

i )
L : Ci ixed by the second excited harmoitiere, alongi,—u3), a
the three hexagonal directions are identic;=R, and result which is nofat least to the author@bviousa priori!

Rb=Ry. Then, straightforward algebra on the real andrpe gjy grift directions arising from the interaction of modes
imaginary parts of Eq42) and(3) yields the following con- ¢ 54\ 3q are perpendicular to the sides of the hexagonal

dition [18] cells [19]
An important question arises. Under which circumstance
|01=16]=|03|=6, 6,=B1—(a,—a3). (4)  does the solution discussed above occur? Our analysis shows

that this basically happens as soon as the harmonic with
The quantityd represents the phase shift between the harwave numbei\/3 becomes active. The region in parameter
monic built on the directiom,—u;, with phaseB;, and the space where this situation is encountered is approximately
phases of the principal harmonics in thg (phasea,) and  determined by the conditiom(q+/3)>0. This defines a
u; (phasews) directions that serve to construct the next reso-boundary beyond which the new solution takes over. We
nant harmonic. This is again a consequence of rotationdelieve this condition to be quite general and it should apply
symmetry. There are two possibilities that may arise: eitheto diverse situations; in particular, the same conclusion is
all the 6’ s have the same sign, or orehas a sign opposite reached with a more complex equation arising in the problem
to that of the two others. We consider here only the secondf a moving nematic-isotropic boundafi8]. This means
case, although the first one is also possitig] from general that the knowledge of the linear dispersion relation may be
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symmetries are easily identified in the figure. Note also that
Figs. Ab) and Xc) demonstrate that the pattern drifts up-
ward. Because the above amplitude equations are expected to
be quantitatively and qualitatively accurate only close
enough to the codimensional two-bifurcation point, we have
solved numerically the full original DKS equation in order to
ascertain the validity of amplitude equation truncations. We
have used a hexagonal box with periodic boundary condi-
tions. The spatial derivatives are evaluated using second-
order finite differences, and the resulting dynamical system
is solved by means of a four-point Runge-Kutta method. For
spatial derivatives we have made use of a particular property
of a hexagonal grid, X{_,h—6hg)/a?=V?hy+0O(a?),
wherea is the mesh spacing and the sum is over the field
values at the six corners of a hexagon, whetgagefers to

its value in the center of the hexagon. This trick has the
advantage of accurately preserving the rotational symmetry
of the original equation. The numerical analysis has here
again confirmed the overall picture of the results described
above. A similar analysis has been performed for the NIB
equation.

Our next investigation focuses on oscillatory modes. Be-
fore presenting the underlying ideas that guided our work,
we shall first discuss the results that emanate from the full
numerical analysis. By increasing the “aspect rati@the
ratio between the box size and the critical wavelepgtly-
namics have proven to be richer and richer. If this ratio is
- large enougltat least equal to thr¢eand we use a hexagonal
(b) box, we have identified an oscillatory mode close enough to
the threshold, the snapshot of which is shown in Fig. 2. Each
cell in the center is oscillating with a phase shift with the six
cells surrounding it(forming the corners of the hexagon
Each corner is oscillating with a phase shift with the adjacent
corner, but in phase with the following corner. In all, we
have three oscillator@ne in the middle of the hexagon and
two in the corners The temporal phase shift between each
oscillator is found to be equal to/23. It is clear from the
figure that this oscillation is accompanied by an increase of
the spatial wavelength. Close inspection shows that the
wavelength has tripled.

In order to illustrate the lines of reason that guided this
investigation, we briefly develop a two-dimensional analogy
Dol with band theory in solid-state physics, as we have previ-
(© ously suggested for a one-dimensional structilré]. For
that purpose, lehg(r) be a steady and spatially periodic

solution andh,(r,t) a small perturbation. Linearization of
FIG. 1. The original hexagonal pattern and two other figuresEq_ (1) yields

(taken at different timesshowing the symmetry breaking and the

upward drift.
sufficient in a given system to hint at the boundary in param- ﬁ_hl =—ah;—V?h;—V*h;+2Vhg- Vh;. (6)
eter space that separates the stable ordered structure from the at

one leading to drift.

Our analytical results have been confirmed by numerical .
calculations in two ways. First, we have integrated the dy-This equation is reminiscent of the Sctinger equation in
namical system of amplitude equatiof® and (3). Starting ~ imaginary time for an electron in a crystal, but with a fun-
from arbitrary solutions in the region just below the line damental differencésee below. Vh, plays the role of the
fixed by w(qy3)=0, dynamics tend toward the above- periodic potential. The Floquet-Bloch the:orem states that the
mentioned symmetry breaking bifurcation. Figure 1 displaysgeneral solution has the forim =e?'€'?""h(r), whereo is
the initial pattern[see Fig. 1a)] and its evolution after the the growth ratdor the energy in solid-state physic€ is a
instability developgsee Figs. (b) and Xc)]. Several broken wave vector which belongs to the first Brillouin zone,
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interaction of the incident wave and the transmitted [&@#.
Perturbation theory reveals here a nonclassical réatiich

has no analogue in quantum mechahiche resonance
opens a gap on th® axis. This gap corresponds to complex
eigenvaluesr. This is possible here since the linear operator
in Eq. (6) is not self-adjoint(contrary to Hamiltonians in
quantum mechani¢s A simple calculation leadgat the
crossing pointto Im(o) = \15R,q%/2. On one hand, the fact
that the resonance occurs@t-q/3 implies a period tripling

of the structure in the direction afi. On the other hand, the
opening of a gap on the wave number axis means that the
instability must be oscillatory in time. This completes our
analysis, on which we shall give an extended account in the
near future.

Finally, an important question remains to be addressed.
This concerns the experimental access to these dynamics. To
the authors’ best knowledge, no experimental evidence has
been reported on the instabilities we have described. While
we think that several systems may be good candidates, eu-
tectics have proven in one dimension to be appropriate for
both drifting patterns and oscillations. According to one of
our suggestiong20], a sudden change in the growth velocity
by a factor of about 4 had led to pattern drifting as a whole.
Most experiments on two-dimensional fronts are performed
on metals wherén situ analysis is a formidable challenge.
We believe that transparent materi@dsich as those used for
thin samples are good candidates on which to perform ex-
periments. Here, of course, visualization based on optical
transmission(as with thin samplésis probably not suitable.
Imaging using reflection on the solid-liquid front would most
likely be promising. A sudden change of the velodipre-

. sumably by a factor of 3 for a hexagonal structure, due to the
(b) law A2V~ const and because wavelength adjustment is very
slow, so that a sudden change in velocity is practically

FIG. 2. Out-of-phase oscillations. Cells have exchanged theirequ“/alent to a wavelength increaséis the growth velocity

role from one figure to the nextot a full temporal period is shown, and A the wavelength Shc,’“”_ cause symmetry breaking
but approximately 2/3). along the whole front. Oscillations may be generated by act-

ing on the eutectic concentration. Chemical or hydrodynamic
systems may also offer the possibility of accessing a drift,
icity of the basic solutiorhy. If o(Q) is an eigenvalue, then provided one can monitor a wavelength modificati.on, for ex-
this is equally true fowr(g+ Q), due to the Goldstone mode ample, via a thermal memory, as has been dew_s_ed for the
associated with translational invariance. Strong wave couStudy Of the Eckhaus instabilif21]. Once the condition for
pling occurs only whenw(Q)=w(q=Q) (recall thate is the drift is reaghed_, it is likely that a confl!ct in th(_e choice of
the bare eigenvalue, and in a perturbative scheme it sufficdhe traveling direction can cause several interactions between
to consider this quantity and this leads to gap opening. Let Waves in different directions. This may lead to spiral-like
us be more specific here and focus on the direction perperlefects or labyrinth patterns. Preliminary simulations on
dicular to u;. Inspection of the relations(Q)=w(q=* Q) large scales seem to reveal evidence of such structures.
reveals some interesting intersections. The first one is obvi- It must be emphasized that the same analysis can be per-
ous and is given b= g/v3. This gives rise to a resonance formed for any symmetry other than hexagonal. The present
between the incident wav@2] and the reflected ong2].  work has given a short view of the richness of what we may
This is a direct analogue of the so-called Bragg reflectioncall the theory of stability of “two-dimensional nonvaria-
Treating the ternVhg as a perturbatiofin a similar way as tional crystals.” There are 17 two-dimensional space groups.
for the quasifree electron problem in a crystahd expand- Combinations of simple analytical concepts such as those
ing the wave on the space spanned by the two degenerapeesented here—group theory, and numerical works—
states, we find an “energy” gap &=q/v3 [18], which is  promise to provide a wide program of nonlinear physics of
unimportant here. Most important in our case is the secon@D dissipative structures.

degeneracywhich is easy to determine by writing down  What we have learned so far is that a simple nonlinear
explicitly the bare dispersion relatiom), which occurs at equation based on symmetries and nonvariational ingredients
Q~q/vV3 (for q close toq.). This resonance follows from (which are inherent in nonequilibrium systemeveals a va-

|Q|<|q|, andh(r) is a periodic function having the period-
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riety of fascinating static and dynamical phenomena. These We have benefitted from several enlightening discussions
continue to prove to be a disguised form for only a fewwith C. Caroli, P. Coullet, J.-M. Debierre, G. Faivre, S.
prototypes and may embrace diverse physical and chemic&auve, and G. looss. K.K. and C.M. benefitted from NATO
systems. Grant No. CRG.920541.
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